/v

AARHUS UNIVERSITET

Microservices and DevOps

Scalable Microservices
Versioning

Henrik Baerbak Christensen

pav Motivation

AARHUS UNIVERSITET

« Microservices = independently deployable services,
collaborating to form a whole system.

 However, as we make changes to add features, we need

to be careful not to break consuming applications nygard, p
263]

— Do not force consumers to match your release schedule

CS@AU Henrik Beerbak Christensen 2

/v

AARHUS UNIVERSITET

‘Own’ Versions

Those that we ourselves control
‘Inter-organization services’

/v Non-breaking Changes

AARHUS UNIVERSITET
* Non-breaking = obey all agreements on all levels of the
stack (http, tcp, ip,)

* Request-reply is asymmetric wrt. ‘robustness’
— Can accept more but never less, and never require more (Req)
— Can return more, but never return less (Reply)

« Nygard reflection
— Is the specification the documented one or the implemented one?

— Nygard’s standpoint: it is the implemented one
« Which must keep obeying the robustness principle

/v Testing Concerns

AARHUS UNIVERSITET

 Nygard advocate random generative testing against your
service, to find ‘gaps’ between spec and implementation
— Resemble his ‘test harness’ pattern to generate ‘out-of-spec’ tests

« Alas

— Randomized tests that do weird thing given the structure of the
API

* Forget keys in JSON post, send null values, empty arrays, etc.

e EX

— | found a bug in my ‘CaveService’ as | POST ed a room with user
id as key ‘id’ instead of ‘creatorld’. The service just made a room
without a creator ®

/v Breaking Changes

AARHUS UNIVERSITET
« A Breaking Change is necessary. What to do?

* Not an application version, but a format version
» The ‘format indicator’ pattern in Messaging (Hohpe & Woolf, 2004)

— Helps in debugging and detection

CS@AU Henrik Beerbak Christensen 6

/v Breaking Changes: REST

AARHUS UNIVERSITET
« Http REST service: Changes in the API structure ?

* Proposals
— Put version in URL: /vl/xya
— Use ‘Accept’ header and ‘Content-Type’ header
— Intro a ‘api-version’ custom header
— Intro a version key in the request body

« All are bad, but least pain is first proposal

» Easy to understand by developers
* No fiddling with load-balancers, caches, proxies, etc.

CS@AU Henrik Beerbak Christensen 7

/v SkyCave Examples

AARHUS UNIVERSITET
 From our own backyard

csdev@m51f19hbc:~$ http "moja.st.client.au.dk:7654/api/v2/auth?loginName=831720&password=12345"

GET guote header

GET fm54ofv1ftuot25
(none

’

Response
Status: 280 0K

"authorg™" - T

« Btw: Did you do it in the REST services ©?

CS@AU Henrik Baerbak Christensen 8

/v Breaking Changes

AARHUS UNIVERSITET

* That is, side-by-side operation
» Test heavily with a mix of versions
— CREATE with new APl and READ with old often poses problems

— All new paths must be available at the same time

 Itis a no-no to have half of the features migrated to /v2 but forcing
clients to access the other half using /v1 !l

CS@AU Henrik Beerbak Christensen 9

/v Breaking Changes

AARHUS UNIVERSITET

 Thatis
— Iv2 controller code forward directly to business logic layer

— /v1 controller code convert incoming to new format, call business
logic, convert result back to v1 format and return...

CS@AU Henrik Beerbak Christensen 10

/v

AARHUS UNIVERSITET

‘Others’ Versions

Intra-organization versioning

eV If ‘Others’ Do Not Behave Well

AARHUS UNIVERSITET

« Growth scenario
— Your API adds three new fields to a query

 Reflection

— All combinations of weird/missing assignments to these new
fields are to be expected!

CS@AU Henrik Beerbak Christensen 12

/v

AARHUS UNIVERSITET

The Testing Aspect

/v Testing Aspect

AARHUS UNIVERSITET
« The ‘call-external-service’ algorithm is basically

— Convert domain object(s) to REST payload

" — Do the external service call
— Receive the returned payload
— Convert payload to domain object(s) and process

o

e Thatis
— Translation, processing,
— The version issue revolves around the translations!

CS@AU Henrik Baerbak Christensen

14

\ 4
AARHUS UNIVERSITET

« Translating the
room record (domain
object) to JISON

e Call the service

« Translate reply
to domain object
(Hm, hm, so so...)

CS@AU

Example: My CaveService Connector

b . s . v T
HttpResponse<JsonNode> reply;

N\

logger.info({"method=postOnRoomPath, context=reguest, position={}, roomDescription="{}]", posif

f for the

roate +he noul nod oneT
Lredate hne payload J Fu

/ message
\>String postPayload = gson.toJson(room);

J

fu._- the POST call \
try {

reply = Unirest.post(url baseURL + "/room/" + positionString).
header(name: "accept",
body (postPayload).
asJson();
} catch (UnirestException e) {

value: "applicatien/json").

logger.error("method=postOnRoomPath, context=UniRestException, exc={}", e);
\\t‘fhrow new CaveException("UniRest exception for POST on /room/"+positionString, %jj’/

f/’EéstResult result; ﬁ‘\\

if (reply.getStatus() == HttpServletResponse.SC_CREATED) {
result = new RestResult(reply.getStatus(),
reply.getHeaders() .getFirst(key: "Location"),
reply.getBody().toString());
} else {
result = new RestResult(reply.getStatus(),

location: "null™, bodyAsJSON: "{ success: false }")

:
1

ogger.info("method=postOnRoomPath, context=reply, status={}", reply.getStatus());

return result; J

(o]

Henrik Baerbak Christensen 15

ot Testing Aspect

AARHUS UNIVERSITET

* Nygard recommend separate testing of the two
translations to prepare for out-of-spec issues...

/ Request Side \ / Response Side \

Test Production Test Production
Code Code Code Code
Call with parameters I gae'?eerate
w1 Response
| Setup |
PR Process response _|
Request >
T A e ‘ Do Stuff

and Things

| X:l‘:ﬂ:?i | Validate Results |

& i) 3

CS@AU Henrik Baerbak Christensen 16

/v

AARHUS UNIVERSITET

« The request translation side Is as-far-as-I-can-see just
normal contract testing

— Just checks that
requests are / Request Side \ K Response Side \

created according
to p ro Vlde r’S Test Production C'l'gcsjte Pfog:dcgon

Testing Aspects

Code Code
q (Call with parameters I gae:eerate
=1 Response
‘ Setup |
request Process response |
Request >
ST | Do §
and Thing
; | X:l;ﬂ:'; Validate Resulls¢

i Wie) 3

CS@AU Henrik Baerbak Christensen 17

o Testing Aspects

AARHUS UNIVERSITET

« The reply translation side is more interesting IMO
— Inject ‘weird’ responses

and validate
propel’ handling / Request Side \ K Response Side \

Test Production Test Production
Code Code Code Code
® D O n Ot re q u i re icall with parameter; :I Ea:";‘e:;::
| Set up
request | o a)
actual remote calls Lol - '°°”"""°"’°—:j
and Things

| X:l‘:‘:.:t;i Validate Results |

i Wie) 3

CS@AU Henrik Baerbak Christensen 18

\ 4
AARHUS UNIVERSITET

« Have to further
refactor my code
to support proposed
tests

 Each ‘box’ must
be individually test
units ...

CS@AU

Requirem ents

publd 3 L

HttpResponse<JsonNode> reply; A

logger.info("method=postOnRoomPath, context=request, position={}, roomDescription="{}
r car the BPOST

Create the payload for the POST message

\>String postPayload = gson.toJson(room);

J

(Lnf« the POST call \
try {

reply = Unirest.post(url baseURL + "/room/" + positionString).

header(name: "accept", value: "application/json").
body (postPayload).
asJson();
} catch (UnirestException e) {
logger.error("method=postOnRoomPath, context=UniRestException, exc={}", e);

", posit

\\i‘fhrow new CaveException("UniRest exception for POST on /room/"+positionString, %jj’/

RestResult result;
if (reply.getStatus() == HttpServletResponse.SC_CREATED) {
result = new RestResult(reply.getStatus(),
reply.getHeaders() .getFirst(key: "Location"),
reply.getBody().toString());

~

_/

} else {
result = new RestResult(reply.getStatus(), location: "null", bodyAsISON: "{ success: false }")
}
logger.info("method=postOnRoomPath, context=reply, status={}", reply.getStatus());
return result;
+
Henrik Baerbak Christensen 19

/v Summary

AARHUS UNIVERSITET
» Postel’s principle is easy to state...

« But require quite a lot of coding efforts and testing...

« Design for failure...

