
Microservices and DevOps

Scalable Microservices
Versioning

Henrik Bærbak Christensen



Motivation

• Microservices = independently deployable services, 

collaborating to form a whole system.

• However, as we make changes to add features, we need 

to be careful not to break consuming applications [Nygard, p 

263]

– Do not force consumers to match your release schedule

• Postel’s robustness principle

– Be conservative in what you do, be liberal in what you accept 

from others.

CS@AU Henrik Bærbak Christensen 2



‘Own’ Versions

Those that we ourselves control

‘Inter-organization services’



Non-breaking Changes

• Non-breaking = obey all agreements on all levels of the 

stack (http, tcp, ip, ….)

• Request-reply is asymmetric wrt. ‘robustness’

– Can accept more but never less, and never require more (Req)

– Can return more, but never return less (Reply)

• Nygard reflection

– Is the specification the documented one or the implemented one?

– Nygard’s standpoint: it is the implemented one

• Which must keep obeying the robustness principle

CS@AU Henrik Bærbak Christensen 4



Testing Concerns

• Nygard advocate random generative testing against your 

service, to find ‘gaps’ between spec and implementation

– Resemble his ‘test harness’ pattern to generate ‘out-of-spec’ tests

• Alas

– Randomized tests that do weird thing given the structure of the 

API

• Forget keys in JSON post, send null values, empty arrays, etc.

• Ex

– I found a bug in my ‘CaveService’ as I POST’ed a room with user 

id as key ‘id’ instead of ‘creatorId’. The service just made a room 

without a creator 
CS@AU Henrik Bærbak Christensen 5



Breaking Changes

• A Breaking Change is necessary. What to do?

• Principle 1:

– Use version numbers on the message format

• Not an application version, but a format version

• The ‘format indicator’ pattern in Messaging (Hohpe & Woolf, 2004)

– Helps in debugging and detection

CS@AU Henrik Bærbak Christensen 6



Breaking Changes: REST

• Http REST service: Changes in the API structure ?

• Proposals

– Put version in URL: /v1/xya

– Use ‘Accept’ header and ‘Content-Type’ header

– Intro a ‘api-version’ custom header

– Intro a version key in the request body

• All are bad, but least pain is first proposal

• Principle 2:

– Version the API by adding version id in the URL

• Easy to understand by developers

• No fiddling with load-balancers, caches, proxies, etc.

CS@AU Henrik Bærbak Christensen 7



SkyCave Examples

• From our own backyard

• Btw: Did you do it in the REST services ☺?

CS@AU Henrik Bærbak Christensen 8



Breaking Changes

• Principle 3:

– Both old and new version must be supported ‘for some time’

• That is, side-by-side operation

• Test heavily with a mix of versions

– CREATE with new API and READ with old often poses problems

– All new paths must be available at the same time

• It is a no-no to have half of the features migrated to /v2 but forcing 

clients to access the other half using /v1 !!!

CS@AU Henrik Bærbak Christensen 9



Breaking Changes

• Principle 4

– Use a (1 version deep) translation pipeline for the old version 

code

• That is

– /v2 controller code forward directly to business logic layer

– /v1 controller code convert incoming to new format, call business 

logic, convert result back to v1 format and return…

CS@AU Henrik Bærbak Christensen 10



‘Others’ Versions

Intra-organization versioning



If ‘Others’ Do Not Behave Well

• Growth scenario

– Your API adds three new fields to a query

• Reflection

– All combinations of weird/missing assignments to these new 

fields are to be expected!

• Principle 5

– Your software should remain cynical! Protect your service, apply 

the stability patterns to each and every integration point.

CS@AU Henrik Bærbak Christensen 12



The Testing Aspect



Testing Aspect

• The ‘call-external-service’ algorithm is basically

– Convert domain object(s) to REST payload

– Do the external service call

– Receive the returned payload

– Convert payload to domain object(s) and process

• That is 

– Translation, processing, translation

– The version issue revolves around the translations!

CS@AU Henrik Bærbak Christensen 14



Example: My CaveService Connector

• Translating the

room record (domain

object) to JSON

• Call the service

• Translate reply

to domain object

(Hm, hm, so so…)

CS@AU Henrik Bærbak Christensen 15



Testing Aspect

• Nygard recommend separate testing of the two 

translations to prepare for out-of-spec issues…

CS@AU Henrik Bærbak Christensen 16



Testing Aspects

• The request translation side is as-far-as-I-can-see just 

normal contract testing

– Just checks that

requests are

created according

to provider’s

requirement

CS@AU Henrik Bærbak Christensen 17



Testing Aspects

• The reply translation side is more interesting IMO

– Inject ‘weird’ responses

and validate

proper handling

• Do not require

actual remote calls

CS@AU Henrik Bærbak Christensen 18



Requirements

• Have to further

refactor my code

to support proposed

tests

• Each ‘box’ must

be individually test

units …

CS@AU Henrik Bærbak Christensen 19



Summary

• Postel’s principle is easy to state…

• But require quite a lot of coding efforts and testing…

• Design for failure… 

CS@AU Henrik Bærbak Christensen 20


